Theory Connected
section ‹Connected Components›
theory Connected
imports
Abstract_Topology_2
begin
subsection ‹Connectedness›
lemma connected_local:
"connected S ⟷
¬ (∃e1 e2.
openin (top_of_set S) e1 ∧
openin (top_of_set S) e2 ∧
S ⊆ e1 ∪ e2 ∧
e1 ∩ e2 = {} ∧
e1 ≠ {} ∧
e2 ≠ {})"
unfolding connected_def openin_open
by safe blast+
lemma exists_diff:
fixes P :: "'a set ⇒ bool"
shows "(∃S. P (- S)) ⟷ (∃S. P S)"
(is "?lhs ⟷ ?rhs")
proof -
have ?rhs if ?lhs
using that by blast
moreover have "P (- (- S))" if "P S" for S
proof -
have "S = - (- S)" by simp
with that show ?thesis by metis
qed
ultimately show ?thesis by metis
qed
lemma connected_clopen: "connected S ⟷
(∀T. openin (top_of_set S) T ∧
closedin (top_of_set S) T ⟶ T = {} ∨ T = S)" (is "?lhs ⟷ ?rhs")
proof -
have "¬ connected S ⟷
(∃e1 e2. open e1 ∧ open (- e2) ∧ S ⊆ e1 ∪ (- e2) ∧ e1 ∩ (- e2) ∩ S = {} ∧ e1 ∩ S ≠ {} ∧ (- e2) ∩ S ≠ {})"
unfolding connected_def openin_open closedin_closed
by (metis double_complement)
then have th0: "connected S ⟷
¬ (∃e2 e1. closed e2 ∧ open e1 ∧ S ⊆ e1 ∪ (- e2) ∧ e1 ∩ (- e2) ∩ S = {} ∧ e1 ∩ S ≠ {} ∧ (- e2) ∩ S ≠ {})"
(is " _ ⟷ ¬ (∃e2 e1. ?P e2 e1)")
by (simp add: closed_def) metis
have th1: "?rhs ⟷ ¬ (∃t' t. closed t'∧t = S∩t' ∧ t≠{} ∧ t≠S ∧ (∃t'. open t' ∧ t = S ∩ t'))"
(is "_ ⟷ ¬ (∃t' t. ?Q t' t)")
unfolding connected_def openin_open closedin_closed by auto
have "(∃e1. ?P e2 e1) ⟷ (∃t. ?Q e2 t)" for e2
proof -
have "?P e2 e1 ⟷ (∃t. closed e2 ∧ t = S∩e2 ∧ open e1 ∧ t = S∩e1 ∧ t≠{} ∧ t ≠ S)" for e1
by auto
then show ?thesis
by metis
qed
then have "∀e2. (∃e1. ?P e2 e1) ⟷ (∃t. ?Q e2 t)"
by blast
then show ?thesis
by (simp add: th0 th1)
qed
subsection ‹Connected components, considered as a connectedness relation or a set›
definition "connected_component S x y ≡ ∃T. connected T ∧ T ⊆ S ∧ x ∈ T ∧ y ∈ T"
abbreviation "connected_component_set S x ≡ Collect (connected_component S x)"
lemma connected_componentI:
"connected T ⟹ T ⊆ S ⟹ x ∈ T ⟹ y ∈ T ⟹ connected_component S x y"
by (auto simp: connected_component_def)
lemma connected_component_in: "connected_component S x y ⟹ x ∈ S ∧ y ∈ S"
by (auto simp: connected_component_def)
lemma connected_component_refl: "x ∈ S ⟹ connected_component S x x"
by (auto simp: connected_component_def) (use connected_sing in blast)
lemma connected_component_refl_eq [simp]: "connected_component S x x ⟷ x ∈ S"
by (auto simp: connected_component_refl) (auto simp: connected_component_def)
lemma connected_component_sym: "connected_component S x y ⟹ connected_component S y x"
by (auto simp: connected_component_def)
lemma connected_component_trans:
"connected_component S x y ⟹ connected_component S y z ⟹ connected_component S x z"
unfolding connected_component_def
by (metis Int_iff Un_iff Un_subset_iff equals0D connected_Un)
lemma connected_component_of_subset:
"connected_component S x y ⟹ S ⊆ T ⟹ connected_component T x y"
by (auto simp: connected_component_def)
lemma connected_component_Union: "connected_component_set S x = ⋃{T. connected T ∧ x ∈ T ∧ T ⊆ S}"
by (auto simp: connected_component_def)
lemma connected_connected_component [iff]: "connected (connected_component_set S x)"
by (auto simp: connected_component_Union intro: connected_Union)
lemma connected_iff_eq_connected_component_set:
"connected S ⟷ (∀x ∈ S. connected_component_set S x = S)"
proof (cases "S = {}")
case True
then show ?thesis by simp
next
case False
then obtain x where "x ∈ S" by auto
show ?thesis
proof
assume "connected S"
then show "∀x ∈ S. connected_component_set S x = S"
by (force simp: connected_component_def)
next
assume "∀x ∈ S. connected_component_set S x = S"
then show "connected S"
by (metis ‹x ∈ S› connected_connected_component)
qed
qed
lemma connected_component_subset: "connected_component_set S x ⊆ S"
using connected_component_in by blast
lemma connected_component_eq_self: "connected S ⟹ x ∈ S ⟹ connected_component_set S x = S"
by (simp add: connected_iff_eq_connected_component_set)
lemma connected_iff_connected_component:
"connected S ⟷ (∀x ∈ S. ∀y ∈ S. connected_component S x y)"
using connected_component_in by (auto simp: connected_iff_eq_connected_component_set)
lemma connected_component_maximal:
"x ∈ T ⟹ connected T ⟹ T ⊆ S ⟹ T ⊆ (connected_component_set S x)"
using connected_component_eq_self connected_component_of_subset by blast
lemma connected_component_mono:
"S ⊆ T ⟹ connected_component_set S x ⊆ connected_component_set T x"
by (simp add: Collect_mono connected_component_of_subset)
lemma connected_component_eq_empty [simp]: "connected_component_set S x = {} ⟷ x ∉ S"
using connected_component_refl by (fastforce simp: connected_component_in)
lemma connected_component_set_empty [simp]: "connected_component_set {} x = {}"
using connected_component_eq_empty by blast
lemma connected_component_eq:
"y ∈ connected_component_set S x ⟹ (connected_component_set S y = connected_component_set S x)"
by (metis (no_types, lifting)
Collect_cong connected_component_sym connected_component_trans mem_Collect_eq)
lemma closed_connected_component:
assumes S: "closed S"
shows "closed (connected_component_set S x)"
proof (cases "x ∈ S")
case False
then show ?thesis
by (metis connected_component_eq_empty closed_empty)
next
case True
show ?thesis
unfolding closure_eq [symmetric]
proof
show "closure (connected_component_set S x) ⊆ connected_component_set S x"
apply (rule connected_component_maximal)
apply (simp add: closure_def True)
apply (simp add: connected_imp_connected_closure)
apply (simp add: S closure_minimal connected_component_subset)
done
next
show "connected_component_set S x ⊆ closure (connected_component_set S x)"
by (simp add: closure_subset)
qed
qed
lemma connected_component_disjoint:
"connected_component_set S a ∩ connected_component_set S b = {} ⟷
a ∉ connected_component_set S b"
apply (auto simp: connected_component_eq)
using connected_component_eq connected_component_sym
apply blast
done
lemma connected_component_nonoverlap:
"connected_component_set S a ∩ connected_component_set S b = {} ⟷
a ∉ S ∨ b ∉ S ∨ connected_component_set S a ≠ connected_component_set S b"
apply (auto simp: connected_component_in)
using connected_component_refl_eq
apply blast
apply (metis connected_component_eq mem_Collect_eq)
apply (metis connected_component_eq mem_Collect_eq)
done
lemma connected_component_overlap:
"connected_component_set S a ∩ connected_component_set S b ≠ {} ⟷
a ∈ S ∧ b ∈ S ∧ connected_component_set S a = connected_component_set S b"
by (auto simp: connected_component_nonoverlap)
lemma connected_component_sym_eq: "connected_component S x y ⟷ connected_component S y x"
using connected_component_sym by blast
lemma connected_component_eq_eq:
"connected_component_set S x = connected_component_set S y ⟷
x ∉ S ∧ y ∉ S ∨ x ∈ S ∧ y ∈ S ∧ connected_component S x y"
apply (cases "y ∈ S", simp)
apply (metis connected_component_eq connected_component_eq_empty connected_component_refl_eq mem_Collect_eq)
apply (cases "x ∈ S", simp)
apply (metis connected_component_eq_empty)
using connected_component_eq_empty
apply blast
done
lemma connected_iff_connected_component_eq:
"connected S ⟷ (∀x ∈ S. ∀y ∈ S. connected_component_set S x = connected_component_set S y)"
by (simp add: connected_component_eq_eq connected_iff_connected_component)
lemma connected_component_idemp:
"connected_component_set (connected_component_set S x) x = connected_component_set S x"
apply (rule subset_antisym)
apply (simp add: connected_component_subset)
apply (metis connected_component_eq_empty connected_component_maximal
connected_component_refl_eq connected_connected_component mem_Collect_eq set_eq_subset)
done
lemma connected_component_unique:
"⟦x ∈ c; c ⊆ S; connected c;
⋀c'. ⟦x ∈ c'; c' ⊆ S; connected c'⟧ ⟹ c' ⊆ c⟧
⟹ connected_component_set S x = c"
apply (rule subset_antisym)
apply (meson connected_component_maximal connected_component_subset connected_connected_component contra_subsetD)
by (simp add: connected_component_maximal)
lemma joinable_connected_component_eq:
"⟦connected T; T ⊆ S;
connected_component_set S x ∩ T ≠ {};
connected_component_set S y ∩ T ≠ {}⟧
⟹ connected_component_set S x = connected_component_set S y"
apply (simp add: ex_in_conv [symmetric])
apply (rule connected_component_eq)
by (metis (no_types, hide_lams) connected_component_eq_eq connected_component_in connected_component_maximal subsetD mem_Collect_eq)
lemma Union_connected_component: "⋃(connected_component_set S ` S) = S"
apply (rule subset_antisym)
apply (simp add: SUP_least connected_component_subset)
using connected_component_refl_eq
by force
lemma complement_connected_component_unions:
"S - connected_component_set S x =
⋃(connected_component_set S ` S - {connected_component_set S x})"
apply (subst Union_connected_component [symmetric], auto)
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma connected_component_intermediate_subset:
"⟦connected_component_set U a ⊆ T; T ⊆ U⟧
⟹ connected_component_set T a = connected_component_set U a"
apply (case_tac "a ∈ U")
apply (simp add: connected_component_maximal connected_component_mono subset_antisym)
using connected_component_eq_empty by blast
subsection ‹The set of connected components of a set›
definition components:: "'a::topological_space set ⇒ 'a set set"
where "components S ≡ connected_component_set S ` S"
lemma components_iff: "S ∈ components U ⟷ (∃x. x ∈ U ∧ S = connected_component_set U x)"
by (auto simp: components_def)
lemma componentsI: "x ∈ U ⟹ connected_component_set U x ∈ components U"
by (auto simp: components_def)
lemma componentsE:
assumes "S ∈ components U"
obtains x where "x ∈ U" "S = connected_component_set U x"
using assms by (auto simp: components_def)
lemma Union_components [simp]: "⋃(components u) = u"
apply (rule subset_antisym)
using Union_connected_component components_def apply fastforce
apply (metis Union_connected_component components_def set_eq_subset)
done
lemma pairwise_disjoint_components: "pairwise (λX Y. X ∩ Y = {}) (components u)"
apply (simp add: pairwise_def)
apply (auto simp: components_iff)
apply (metis connected_component_eq_eq connected_component_in)+
done
lemma in_components_nonempty: "c ∈ components s ⟹ c ≠ {}"
by (metis components_iff connected_component_eq_empty)
lemma in_components_subset: "c ∈ components s ⟹ c ⊆ s"
using Union_components by blast
lemma in_components_connected: "c ∈ components s ⟹ connected c"
by (metis components_iff connected_connected_component)
lemma in_components_maximal:
"c ∈ components s ⟷
c ≠ {} ∧ c ⊆ s ∧ connected c ∧ (∀d. d ≠ {} ∧ c ⊆ d ∧ d ⊆ s ∧ connected d ⟶ d = c)"
apply (rule iffI)
apply (simp add: in_components_nonempty in_components_connected)
apply (metis (full_types) components_iff connected_component_eq_self connected_component_intermediate_subset connected_component_refl in_components_subset mem_Collect_eq rev_subsetD)
apply (metis bot.extremum_uniqueI components_iff connected_component_eq_empty connected_component_maximal connected_component_subset connected_connected_component subset_emptyI)
done
lemma joinable_components_eq:
"connected t ∧ t ⊆ s ∧ c1 ∈ components s ∧ c2 ∈ components s ∧ c1 ∩ t ≠ {} ∧ c2 ∩ t ≠ {} ⟹ c1 = c2"
by (metis (full_types) components_iff joinable_connected_component_eq)
lemma closed_components: "⟦closed s; c ∈ components s⟧ ⟹ closed c"
by (metis closed_connected_component components_iff)
lemma components_nonoverlap:
"⟦c ∈ components s; c' ∈ components s⟧ ⟹ (c ∩ c' = {}) ⟷ (c ≠ c')"
apply (auto simp: in_components_nonempty components_iff)
using connected_component_refl apply blast
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma components_eq: "⟦c ∈ components s; c' ∈ components s⟧ ⟹ (c = c' ⟷ c ∩ c' ≠ {})"
by (metis components_nonoverlap)
lemma components_eq_empty [simp]: "components s = {} ⟷ s = {}"
by (simp add: components_def)
lemma components_empty [simp]: "components {} = {}"
by simp
lemma connected_eq_connected_components_eq: "connected s ⟷ (∀c ∈ components s. ∀c' ∈ components s. c = c')"
by (metis (no_types, hide_lams) components_iff connected_component_eq_eq connected_iff_connected_component)
lemma components_eq_sing_iff: "components s = {s} ⟷ connected s ∧ s ≠ {}"
apply (rule iffI)
using in_components_connected apply fastforce
apply safe
using Union_components apply fastforce
apply (metis components_iff connected_component_eq_self)
using in_components_maximal
apply auto
done
lemma components_eq_sing_exists: "(∃a. components s = {a}) ⟷ connected s ∧ s ≠ {}"
apply (rule iffI)
using connected_eq_connected_components_eq apply fastforce
apply (metis components_eq_sing_iff)
done
lemma connected_eq_components_subset_sing: "connected s ⟷ components s ⊆ {s}"
by (metis Union_components components_empty components_eq_sing_iff connected_empty insert_subset order_refl subset_singletonD)
lemma connected_eq_components_subset_sing_exists: "connected s ⟷ (∃a. components s ⊆ {a})"
by (metis components_eq_sing_exists connected_eq_components_subset_sing empty_iff subset_iff subset_singletonD)
lemma in_components_self: "s ∈ components s ⟷ connected s ∧ s ≠ {}"
by (metis components_empty components_eq_sing_iff empty_iff in_components_connected insertI1)
lemma components_maximal: "⟦c ∈ components s; connected t; t ⊆ s; c ∩ t ≠ {}⟧ ⟹ t ⊆ c"
apply (simp add: components_def ex_in_conv [symmetric], clarify)
by (meson connected_component_def connected_component_trans)
lemma exists_component_superset: "⟦t ⊆ s; s ≠ {}; connected t⟧ ⟹ ∃c. c ∈ components s ∧ t ⊆ c"
apply (cases "t = {}", force)
apply (metis components_def ex_in_conv connected_component_maximal contra_subsetD image_eqI)
done
lemma components_intermediate_subset: "⟦s ∈ components u; s ⊆ t; t ⊆ u⟧ ⟹ s ∈ components t"
apply (auto simp: components_iff)
apply (metis connected_component_eq_empty connected_component_intermediate_subset)
done
lemma in_components_unions_complement: "c ∈ components s ⟹ s - c = ⋃(components s - {c})"
by (metis complement_connected_component_unions components_def components_iff)
lemma connected_intermediate_closure:
assumes cs: "connected s" and st: "s ⊆ t" and ts: "t ⊆ closure s"
shows "connected t"
proof (rule connectedI)
fix A B
assume A: "open A" and B: "open B" and Alap: "A ∩ t ≠ {}" and Blap: "B ∩ t ≠ {}"
and disj: "A ∩ B ∩ t = {}" and cover: "t ⊆ A ∪ B"
have disjs: "A ∩ B ∩ s = {}"
using disj st by auto
have "A ∩ closure s ≠ {}"
using Alap Int_absorb1 ts by blast
then have Alaps: "A ∩ s ≠ {}"
by (simp add: A open_Int_closure_eq_empty)
have "B ∩ closure s ≠ {}"
using Blap Int_absorb1 ts by blast
then have Blaps: "B ∩ s ≠ {}"
by (simp add: B open_Int_closure_eq_empty)
then show False
using cs [unfolded connected_def] A B disjs Alaps Blaps cover st
by blast
qed
lemma closedin_connected_component: "closedin (top_of_set s) (connected_component_set s x)"
proof (cases "connected_component_set s x = {}")
case True
then show ?thesis
by (metis closedin_empty)
next
case False
then obtain y where y: "connected_component s x y"
by blast
have *: "connected_component_set s x ⊆ s ∩ closure (connected_component_set s x)"
by (auto simp: closure_def connected_component_in)
have "connected_component s x y ⟹ s ∩ closure (connected_component_set s x) ⊆ connected_component_set s x"
apply (rule connected_component_maximal, simp)
using closure_subset connected_component_in apply fastforce
using * connected_intermediate_closure apply blast+
done
with y * show ?thesis
by (auto simp: closedin_closed)
qed
lemma closedin_component:
"C ∈ components s ⟹ closedin (top_of_set s) C"
using closedin_connected_component componentsE by blast
subsection ‹Proving a function is constant on a connected set
by proving that a level set is open›
lemma continuous_levelset_openin_cases:
fixes f :: "_ ⇒ 'b::t1_space"
shows "connected s ⟹ continuous_on s f ⟹
openin (top_of_set s) {x ∈ s. f x = a}
⟹ (∀x ∈ s. f x ≠ a) ∨ (∀x ∈ s. f x = a)"
unfolding connected_clopen
using continuous_closedin_preimage_constant by auto
lemma continuous_levelset_openin:
fixes f :: "_ ⇒ 'b::t1_space"
shows "connected s ⟹ continuous_on s f ⟹
openin (top_of_set s) {x ∈ s. f x = a} ⟹
(∃x ∈ s. f x = a) ⟹ (∀x ∈ s. f x = a)"
using continuous_levelset_openin_cases[of s f ]
by meson
lemma continuous_levelset_open:
fixes f :: "_ ⇒ 'b::t1_space"
assumes "connected s"
and "continuous_on s f"
and "open {x ∈ s. f x = a}"
and "∃x ∈ s. f x = a"
shows "∀x ∈ s. f x = a"
using continuous_levelset_openin[OF assms(1,2), of a, unfolded openin_open]
using assms (3,4)
by fast
subsection ‹Preservation of Connectedness›
lemma homeomorphic_connectedness:
assumes "s homeomorphic t"
shows "connected s ⟷ connected t"
using assms unfolding homeomorphic_def homeomorphism_def by (metis connected_continuous_image)
lemma connected_monotone_quotient_preimage:
assumes "connected T"
and contf: "continuous_on S f" and fim: "f ` S = T"
and opT: "⋀U. U ⊆ T
⟹ openin (top_of_set S) (S ∩ f -` U) ⟷
openin (top_of_set T) U"
and connT: "⋀y. y ∈ T ⟹ connected (S ∩ f -` {y})"
shows "connected S"
proof (rule connectedI)
fix U V
assume "open U" and "open V" and "U ∩ S ≠ {}" and "V ∩ S ≠ {}"
and "U ∩ V ∩ S = {}" and "S ⊆ U ∪ V"
moreover
have disjoint: "f ` (S ∩ U) ∩ f ` (S ∩ V) = {}"
proof -
have False if "y ∈ f ` (S ∩ U) ∩ f ` (S ∩ V)" for y
proof -
have "y ∈ T"
using fim that by blast
show ?thesis
using connectedD [OF connT [OF ‹y ∈ T›] ‹open U› ‹open V›]
‹S ⊆ U ∪ V› ‹U ∩ V ∩ S = {}› that by fastforce
qed
then show ?thesis by blast
qed
ultimately have UU: "(S ∩ f -` f ` (S ∩ U)) = S ∩ U" and VV: "(S ∩ f -` f ` (S ∩ V)) = S ∩ V"
by auto
have opeU: "openin (top_of_set T) (f ` (S ∩ U))"
by (metis UU ‹open U› fim image_Int_subset le_inf_iff opT openin_open_Int)
have opeV: "openin (top_of_set T) (f ` (S ∩ V))"
by (metis opT fim VV ‹open V› openin_open_Int image_Int_subset inf.bounded_iff)
have "T ⊆ f ` (S ∩ U) ∪ f ` (S ∩ V)"
using ‹S ⊆ U ∪ V› fim by auto
then show False
using ‹connected T› disjoint opeU opeV ‹U ∩ S ≠ {}› ‹V ∩ S ≠ {}›
by (auto simp: connected_openin)
qed
lemma connected_open_monotone_preimage:
assumes contf: "continuous_on S f" and fim: "f ` S = T"
and ST: "⋀C. openin (top_of_set S) C ⟹ openin (top_of_set T) (f ` C)"
and connT: "⋀y. y ∈ T ⟹ connected (S ∩ f -` {y})"
and "connected C" "C ⊆ T"
shows "connected (S ∩ f -` C)"
proof -
have contf': "continuous_on (S ∩ f -` C) f"
by (meson contf continuous_on_subset inf_le1)
have eqC: "f ` (S ∩ f -` C) = C"
using ‹C ⊆ T› fim by blast
show ?thesis
proof (rule connected_monotone_quotient_preimage [OF ‹connected C› contf' eqC])
show "connected (S ∩ f -` C ∩ f -` {y})" if "y ∈ C" for y
proof -
have "S ∩ f -` C ∩ f -` {y} = S ∩ f -` {y}"
using that by blast
moreover have "connected (S ∩ f -` {y})"
using ‹C ⊆ T› connT that by blast
ultimately show ?thesis
by metis
qed
have "⋀U. openin (top_of_set (S ∩ f -` C)) U
⟹ openin (top_of_set C) (f ` U)"
using open_map_restrict [OF _ ST ‹C ⊆ T›] by metis
then show "⋀D. D ⊆ C
⟹ openin (top_of_set (S ∩ f -` C)) (S ∩ f -` C ∩ f -` D) =
openin (top_of_set C) D"
using open_map_imp_quotient_map [of "(S ∩ f -` C)" f] contf' by (simp add: eqC)
qed
qed
lemma connected_closed_monotone_preimage:
assumes contf: "continuous_on S f" and fim: "f ` S = T"
and ST: "⋀C. closedin (top_of_set S) C ⟹ closedin (top_of_set T) (f ` C)"
and connT: "⋀y. y ∈ T ⟹ connected (S ∩ f -` {y})"
and "connected C" "C ⊆ T"
shows "connected (S ∩ f -` C)"
proof -
have contf': "continuous_on (S ∩ f -` C) f"
by (meson contf continuous_on_subset inf_le1)
have eqC: "f ` (S ∩ f -` C) = C"
using ‹C ⊆ T› fim by blast
show ?thesis
proof (rule connected_monotone_quotient_preimage [OF ‹connected C› contf' eqC])
show "connected (S ∩ f -` C ∩ f -` {y})" if "y ∈ C" for y
proof -
have "S ∩ f -` C ∩ f -` {y} = S ∩ f -` {y}"
using that by blast
moreover have "connected (S ∩ f -` {y})"
using ‹C ⊆ T› connT that by blast
ultimately show ?thesis
by metis
qed
have "⋀U. closedin (top_of_set (S ∩ f -` C)) U
⟹ closedin (top_of_set C) (f ` U)"
using closed_map_restrict [OF _ ST ‹C ⊆ T›] by metis
then show "⋀D. D ⊆ C
⟹ openin (top_of_set (S ∩ f -` C)) (S ∩ f -` C ∩ f -` D) =
openin (top_of_set C) D"
using closed_map_imp_quotient_map [of "(S ∩ f -` C)" f] contf' by (simp add: eqC)
qed
qed
subsection‹Lemmas about components›
text ‹See Newman IV, 3.3 and 3.4.›
lemma connected_Un_clopen_in_complement:
fixes S U :: "'a::metric_space set"
assumes "connected S" "connected U" "S ⊆ U"
and opeT: "openin (top_of_set (U - S)) T"
and cloT: "closedin (top_of_set (U - S)) T"
shows "connected (S ∪ T)"
proof -
have *: "⟦⋀x y. P x y ⟷ P y x; ⋀x y. P x y ⟹ S ⊆ x ∨ S ⊆ y;
⋀x y. ⟦P x y; S ⊆ x⟧ ⟹ False⟧ ⟹ ¬(∃x y. (P x y))" for P
by metis
show ?thesis
unfolding connected_closedin_eq
proof (rule *)
fix H1 H2
assume H: "closedin (top_of_set (S ∪ T)) H1 ∧
closedin (top_of_set (S ∪ T)) H2 ∧
H1 ∪ H2 = S ∪ T ∧ H1 ∩ H2 = {} ∧ H1 ≠ {} ∧ H2 ≠ {}"
then have clo: "closedin (top_of_set S) (S ∩ H1)"
"closedin (top_of_set S) (S ∩ H2)"
by (metis Un_upper1 closedin_closed_subset inf_commute)+
have Seq: "S ∩ (H1 ∪ H2) = S"
by (simp add: H)
have "S ∩ ((S ∪ T) ∩ H1) ∪ S ∩ ((S ∪ T) ∩ H2) = S"
using Seq by auto
moreover have "H1 ∩ (S ∩ ((S ∪ T) ∩ H2)) = {}"
using H by blast
ultimately have "S ∩ H1 = {} ∨ S ∩ H2 = {}"
by (metis (no_types) H Int_assoc ‹S ∩ (H1 ∪ H2) = S› ‹connected S›
clo Seq connected_closedin inf_bot_right inf_le1)
then show "S ⊆ H1 ∨ S ⊆ H2"
using H ‹connected S› unfolding connected_closedin by blast
next
fix H1 H2
assume H: "closedin (top_of_set (S ∪ T)) H1 ∧
closedin (top_of_set (S ∪ T)) H2 ∧
H1 ∪ H2 = S ∪ T ∧ H1 ∩ H2 = {} ∧ H1 ≠ {} ∧ H2 ≠ {}"
and "S ⊆ H1"
then have H2T: "H2 ⊆ T"
by auto
have "T ⊆ U"
using Diff_iff opeT openin_imp_subset by auto
with ‹S ⊆ U› have Ueq: "U = (U - S) ∪ (S ∪ T)"
by auto
have "openin (top_of_set ((U - S) ∪ (S ∪ T))) H2"
proof (rule openin_subtopology_Un)
show "openin (top_of_set (S ∪ T)) H2"
using ‹H2 ⊆ T› apply (auto simp: openin_closedin_eq)
by (metis Diff_Diff_Int Diff_disjoint Diff_partition Diff_subset H Int_absorb1 Un_Diff)
then show "openin (top_of_set (U - S)) H2"
by (meson H2T Un_upper2 opeT openin_subset_trans openin_trans)
qed
moreover have "closedin (top_of_set ((U - S) ∪ (S ∪ T))) H2"
proof (rule closedin_subtopology_Un)
show "closedin (top_of_set (U - S)) H2"
using H H2T cloT closedin_subset_trans
by (blast intro: closedin_subtopology_Un closedin_trans)
qed (simp add: H)
ultimately
have H2: "H2 = {} ∨ H2 = U"
using Ueq ‹connected U› unfolding connected_clopen by metis
then have "H2 ⊆ S"
by (metis Diff_partition H Un_Diff_cancel Un_subset_iff ‹H2 ⊆ T› assms(3) inf.orderE opeT openin_imp_subset)
moreover have "T ⊆ H2 - S"
by (metis (no_types) H2 H opeT openin_closedin_eq topspace_euclidean_subtopology)
ultimately show False
using H ‹S ⊆ H1› by blast
qed blast
qed
proposition component_diff_connected:
fixes S :: "'a::metric_space set"
assumes "connected S" "connected U" "S ⊆ U" and C: "C ∈ components (U - S)"
shows "connected(U - C)"
using ‹connected S› unfolding connected_closedin_eq not_ex de_Morgan_conj
proof clarify
fix H3 H4
assume clo3: "closedin (top_of_set (U - C)) H3"
and clo4: "closedin (top_of_set (U - C)) H4"
and "H3 ∪ H4 = U - C" and "H3 ∩ H4 = {}" and "H3 ≠ {}" and "H4 ≠ {}"
and * [rule_format]:
"∀H1 H2. ¬ closedin (top_of_set S) H1 ∨
¬ closedin (top_of_set S) H2 ∨
H1 ∪ H2 ≠ S ∨ H1 ∩ H2 ≠ {} ∨ ¬ H1 ≠ {} ∨ ¬ H2 ≠ {}"
then have "H3 ⊆ U-C" and ope3: "openin (top_of_set (U - C)) (U - C - H3)"
and "H4 ⊆ U-C" and ope4: "openin (top_of_set (U - C)) (U - C - H4)"
by (auto simp: closedin_def)
have "C ≠ {}" "C ⊆ U-S" "connected C"
using C in_components_nonempty in_components_subset in_components_maximal by blast+
have cCH3: "connected (C ∪ H3)"
proof (rule connected_Un_clopen_in_complement [OF ‹connected C› ‹connected U› _ _ clo3])
show "openin (top_of_set (U - C)) H3"
apply (simp add: openin_closedin_eq ‹H3 ⊆ U - C›)
apply (simp add: closedin_subtopology)
by (metis Diff_cancel Diff_triv Un_Diff clo4 ‹H3 ∩ H4 = {}› ‹H3 ∪ H4 = U - C› closedin_closed inf_commute sup_bot.left_neutral)
qed (use clo3 ‹C ⊆ U - S› in auto)
have cCH4: "connected (C ∪ H4)"
proof (rule connected_Un_clopen_in_complement [OF ‹connected C› ‹connected U› _ _ clo4])
show "openin (top_of_set (U - C)) H4"
apply (simp add: openin_closedin_eq ‹H4 ⊆ U - C›)
apply (simp add: closedin_subtopology)
by (metis Diff_cancel Int_commute Un_Diff Un_Diff_Int ‹H3 ∩ H4 = {}› ‹H3 ∪ H4 = U - C› clo3 closedin_closed)
qed (use clo4 ‹C ⊆ U - S› in auto)
have "closedin (top_of_set S) (S ∩ H3)" "closedin (top_of_set S) (S ∩ H4)"
using clo3 clo4 ‹S ⊆ U› ‹C ⊆ U - S› by (auto simp: closedin_closed)
moreover have "S ∩ H3 ≠ {}"
using components_maximal [OF C cCH3] ‹C ≠ {}› ‹C ⊆ U - S› ‹H3 ≠ {}› ‹H3 ⊆ U - C› by auto
moreover have "S ∩ H4 ≠ {}"
using components_maximal [OF C cCH4] ‹C ≠ {}› ‹C ⊆ U - S› ‹H4 ≠ {}› ‹H4 ⊆ U - C› by auto
ultimately show False
using * [of "S ∩ H3" "S ∩ H4"] ‹H3 ∩ H4 = {}› ‹C ⊆ U - S› ‹H3 ∪ H4 = U - C› ‹S ⊆ U›
by auto
qed
subsection‹Constancy of a function from a connected set into a finite, disconnected or discrete set›
text‹Still missing: versions for a set that is smaller than R, or countable.›
lemma continuous_disconnected_range_constant:
assumes S: "connected S"
and conf: "continuous_on S f"
and fim: "f ` S ⊆ t"
and cct: "⋀y. y ∈ t ⟹ connected_component_set t y = {y}"
shows "f constant_on S"
proof (cases "S = {}")
case True then show ?thesis
by (simp add: constant_on_def)
next
case False
{ fix x assume "x ∈ S"
then have "f ` S ⊆ {f x}"
by (metis connected_continuous_image conf connected_component_maximal fim image_subset_iff rev_image_eqI S cct)
}
with False show ?thesis
unfolding constant_on_def by blast
qed
text‹This proof requires the existence of two separate values of the range type.›
lemma finite_range_constant_imp_connected:
assumes "⋀f::'a::topological_space ⇒ 'b::real_normed_algebra_1.
⟦continuous_on S f; finite(f ` S)⟧ ⟹ f constant_on S"
shows "connected S"
proof -
{ fix t u
assume clt: "closedin (top_of_set S) t"
and clu: "closedin (top_of_set S) u"
and tue: "t ∩ u = {}" and tus: "t ∪ u = S"
have conif: "continuous_on S (λx. if x ∈ t then 0 else 1)"
apply (subst tus [symmetric])
apply (rule continuous_on_cases_local)
using clt clu tue
apply (auto simp: tus)
done
have fi: "finite ((λx. if x ∈ t then 0 else 1) ` S)"
by (rule finite_subset [of _ "{0,1}"]) auto
have "t = {} ∨ u = {}"
using assms [OF conif fi] tus [symmetric]
by (auto simp: Ball_def constant_on_def) (metis IntI empty_iff one_neq_zero tue)
}
then show ?thesis
by (simp add: connected_closedin_eq)
qed
end