Theory AVL_Bal_Set
section "AVL Tree with Balance Factors (1)"
theory AVL_Bal_Set
imports
Cmp
Isin2
begin
text ‹This version detects height increase/decrease from above via the change in balance factors.›
datatype bal = Lh | Bal | Rh
type_synonym 'a tree_bal = "('a * bal) tree"
text ‹Invariant:›
fun avl :: "'a tree_bal ⇒ bool" where
"avl Leaf = True" |
"avl (Node l (a,b) r) =
((case b of
Bal ⇒ height r = height l |
Lh ⇒ height l = height r + 1 |
Rh ⇒ height r = height l + 1)
∧ avl l ∧ avl r)"
subsection ‹Code›
fun is_bal where
"is_bal (Node l (a,b) r) = (b = Bal)"
fun incr where
"incr t t' = (t = Leaf ∨ is_bal t ∧ ¬ is_bal t')"
fun rot2 where
"rot2 A a B c C = (case B of
(Node B⇩1 (b, bb) B⇩2) ⇒
let b⇩1 = if bb = Rh then Lh else Bal;
b⇩2 = if bb = Lh then Rh else Bal
in Node (Node A (a,b⇩1) B⇩1) (b,Bal) (Node B⇩2 (c,b⇩2) C))"
fun balL :: "'a tree_bal ⇒ 'a ⇒ bal ⇒ 'a tree_bal ⇒ 'a tree_bal" where
"balL AB c bc C = (case bc of
Bal ⇒ Node AB (c,Lh) C |
Rh ⇒ Node AB (c,Bal) C |
Lh ⇒ (case AB of
Node A (a,Lh) B ⇒ Node A (a,Bal) (Node B (c,Bal) C) |
Node A (a,Bal) B ⇒ Node A (a,Rh) (Node B (c,Lh) C) |
Node A (a,Rh) B ⇒ rot2 A a B c C))"
fun balR :: "'a tree_bal ⇒ 'a ⇒ bal ⇒ 'a tree_bal ⇒ 'a tree_bal" where
"balR A a ba BC = (case ba of
Bal ⇒ Node A (a,Rh) BC |
Lh ⇒ Node A (a,Bal) BC |
Rh ⇒ (case BC of
Node B (c,Rh) C ⇒ Node (Node A (a,Bal) B) (c,Bal) C |
Node B (c,Bal) C ⇒ Node (Node A (a,Rh) B) (c,Lh) C |
Node B (c,Lh) C ⇒ rot2 A a B c C))"
fun insert :: "'a::linorder ⇒ 'a tree_bal ⇒ 'a tree_bal" where
"insert x Leaf = Node Leaf (x, Bal) Leaf" |
"insert x (Node l (a, b) r) = (case cmp x a of
EQ ⇒ Node l (a, b) r |
LT ⇒ let l' = insert x l in if incr l l' then balL l' a b r else Node l' (a,b) r |
GT ⇒ let r' = insert x r in if incr r r' then balR l a b r' else Node l (a,b) r')"
fun decr where
"decr t t' = (t ≠ Leaf ∧ (t' = Leaf ∨ ¬ is_bal t ∧ is_bal t'))"
fun split_max :: "'a tree_bal ⇒ 'a tree_bal * 'a" where
"split_max (Node l (a, ba) r) =
(if r = Leaf then (l,a)
else let (r',a') = split_max r;
t' = if decr r r' then balL l a ba r' else Node l (a,ba) r'
in (t', a'))"
fun delete :: "'a::linorder ⇒ 'a tree_bal ⇒ 'a tree_bal" where
"delete _ Leaf = Leaf" |
"delete x (Node l (a, ba) r) =
(case cmp x a of
EQ ⇒ if l = Leaf then r
else let (l', a') = split_max l in
if decr l l' then balR l' a' ba r else Node l' (a',ba) r |
LT ⇒ let l' = delete x l in if decr l l' then balR l' a ba r else Node l' (a,ba) r |
GT ⇒ let r' = delete x r in if decr r r' then balL l a ba r' else Node l (a,ba) r')"
subsection ‹Proofs›
lemmas split_max_induct = split_max.induct[case_names Node Leaf]
lemmas splits = if_splits tree.splits bal.splits
declare Let_def [simp]
subsubsection "Proofs about insertion"
lemma avl_insert: "avl t ⟹
avl(insert x t) ∧
height(insert x t) = height t + (if incr t (insert x t) then 1 else 0)"
apply(induction x t rule: insert.induct)
apply(auto split!: splits)
done
text ‹The following two auxiliary lemma merely simplify the proof of ‹inorder_insert›.›
lemma [simp]: "[] ≠ ins_list x xs"
by(cases xs) auto
lemma [simp]: "avl t ⟹ insert x t ≠ ⟨l, (a, Rh), ⟨⟩⟩ ∧ insert x t ≠ ⟨⟨⟩, (a, Lh), r⟩"
by(drule avl_insert[of _ x]) (auto split: splits)
theorem inorder_insert:
"⟦ avl t; sorted(inorder t) ⟧ ⟹ inorder(insert x t) = ins_list x (inorder t)"
apply(induction t)
apply (auto simp: ins_list_simps split!: splits)
done
subsubsection "Proofs about deletion"
lemma inorder_balR:
"⟦ ba = Rh ⟶ r ≠ Leaf; avl r ⟧
⟹ inorder (balR l a ba r) = inorder l @ a # inorder r"
by (auto split: splits)
lemma inorder_balL:
"⟦ ba = Lh ⟶ l ≠ Leaf; avl l ⟧
⟹ inorder (balL l a ba r) = inorder l @ a # inorder r"
by (auto split: splits)
lemma height_1_iff: "avl t ⟹ height t = Suc 0 ⟷ (∃x. t = Node Leaf (x,Bal) Leaf)"
by(cases t) (auto split: splits prod.splits)
lemma avl_split_max:
"⟦ split_max t = (t',a); avl t; t ≠ Leaf ⟧ ⟹
avl t' ∧ height t = height t' + (if decr t t' then 1 else 0)"
apply(induction t arbitrary: t' a rule: split_max_induct)
apply(auto simp: max_absorb1 max_absorb2 height_1_iff split!: splits prod.splits)
done
lemma avl_delete: "avl t ⟹
avl (delete x t) ∧
height t = height (delete x t) + (if decr t (delete x t) then 1 else 0)"
apply(induction x t rule: delete.induct)
apply(auto simp: max_absorb1 max_absorb2 height_1_iff dest: avl_split_max split!: splits prod.splits)
done
lemma inorder_split_maxD:
"⟦ split_max t = (t',a); t ≠ Leaf; avl t ⟧ ⟹
inorder t' @ [a] = inorder t"
apply(induction t arbitrary: t' rule: split_max.induct)
apply(fastforce split!: splits prod.splits)
apply simp
done
lemma neq_Leaf_if_height_neq_0: "height t ≠ 0 ⟹ t ≠ Leaf"
by auto
lemma split_max_Leaf: "⟦ t ≠ Leaf; avl t ⟧ ⟹ split_max t = (⟨⟩, x) ⟷ t = Node Leaf (x,Bal) Leaf"
by(cases t) (auto split: splits prod.splits)
theorem inorder_delete:
"⟦ avl t; sorted(inorder t) ⟧ ⟹ inorder (delete x t) = del_list x (inorder t)"
apply(induction t rule: tree2_induct)
apply(auto simp: del_list_simps inorder_balR inorder_balL avl_delete inorder_split_maxD
split_max_Leaf neq_Leaf_if_height_neq_0
simp del: balL.simps balR.simps split!: splits prod.splits)
done
subsubsection ‹Set Implementation›
interpretation S: Set_by_Ordered
where empty = Leaf and isin = isin
and insert = insert
and delete = delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)
case 1 show ?case by (simp)
next
case 2 thus ?case by(simp add: isin_set_inorder)
next
case 3 thus ?case by(simp add: inorder_insert)
next
case 4 thus ?case by(simp add: inorder_delete)
next
case 5 thus ?case by (simp)
next
case 6 thus ?case by (simp add: avl_insert)
next
case 7 thus ?case by (simp add: avl_delete)
qed
end