Theory Char_ord
section ‹Order on characters›
theory Char_ord
imports Main
begin
instantiation char :: linorder
begin
definition less_eq_char :: "char ⇒ char ⇒ bool"
where "c1 ≤ c2 ⟷ of_char c1 ≤ (of_char c2 :: nat)"
definition less_char :: "char ⇒ char ⇒ bool"
where "c1 < c2 ⟷ of_char c1 < (of_char c2 :: nat)"
instance
by standard (auto simp add: less_eq_char_def less_char_def)
end
lemma less_eq_char_simp [simp]:
"Char b0 b1 b2 b3 b4 b5 b6 b7 ≤ Char c0 c1 c2 c3 c4 c5 c6 c7
⟷ foldr (λb k. of_bool b + k * 2) [b0, b1, b2, b3, b4, b5, b6, b7] 0
≤ foldr (λb k. of_bool b + k * 2) [c0, c1, c2, c3, c4, c5, c6, c7] (0::nat)"
by (simp add: less_eq_char_def)
lemma less_char_simp [simp]:
"Char b0 b1 b2 b3 b4 b5 b6 b7 < Char c0 c1 c2 c3 c4 c5 c6 c7
⟷ foldr (λb k. of_bool b + k * 2) [b0, b1, b2, b3, b4, b5, b6, b7] 0
< foldr (λb k. of_bool b + k * 2) [c0, c1, c2, c3, c4, c5, c6, c7] (0::nat)"
by (simp add: less_char_def)
instantiation char :: distrib_lattice
begin
definition "(inf :: char ⇒ _) = min"
definition "(sup :: char ⇒ _) = max"
instance
by standard (auto simp add: inf_char_def sup_char_def max_min_distrib2)
end
end