Theory Discrete
section ‹Discrete cpo types›
theory Discrete
imports Cont
begin
datatype 'a discr = Discr "'a :: type"
subsection ‹Discrete cpo class instance›
instantiation discr :: (type) discrete_cpo
begin
definition "((⊑) :: 'a discr ⇒ 'a discr ⇒ bool) = (=)"
instance
by standard (simp add: below_discr_def)
end
subsection ‹\emph{undiscr}›
definition undiscr :: "('a::type)discr ⇒ 'a"
where "undiscr x = (case x of Discr y ⇒ y)"
lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
by (simp add: undiscr_def)
lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
by (induct y) simp
end