Theory Up
section ‹The type of lifted values›
theory Up
imports Cfun
begin
default_sort cpo
subsection ‹Definition of new type for lifting›
datatype 'a u ("(_⇩⊥)" [1000] 999) = Ibottom | Iup 'a
primrec Ifup :: "('a → 'b::pcpo) ⇒ 'a u ⇒ 'b"
where
"Ifup f Ibottom = ⊥"
| "Ifup f (Iup x) = f⋅x"
subsection ‹Ordering on lifted cpo›
instantiation u :: (cpo) below
begin
definition below_up_def:
"(⊑) ≡
(λx y.
(case x of
Ibottom ⇒ True
| Iup a ⇒ (case y of Ibottom ⇒ False | Iup b ⇒ a ⊑ b)))"
instance ..
end
lemma minimal_up [iff]: "Ibottom ⊑ z"
by (simp add: below_up_def)
lemma not_Iup_below [iff]: "Iup x \<notsqsubseteq> Ibottom"
by (simp add: below_up_def)
lemma Iup_below [iff]: "(Iup x ⊑ Iup y) = (x ⊑ y)"
by (simp add: below_up_def)
subsection ‹Lifted cpo is a partial order›
instance u :: (cpo) po
proof
fix x :: "'a u"
show "x ⊑ x"
by (simp add: below_up_def split: u.split)
next
fix x y :: "'a u"
assume "x ⊑ y" "y ⊑ x"
then show "x = y"
by (auto simp: below_up_def split: u.split_asm intro: below_antisym)
next
fix x y z :: "'a u"
assume "x ⊑ y" "y ⊑ z"
then show "x ⊑ z"
by (auto simp: below_up_def split: u.split_asm intro: below_trans)
qed
subsection ‹Lifted cpo is a cpo›
lemma is_lub_Iup: "range S <<| x ⟹ range (λi. Iup (S i)) <<| Iup x"
by (auto simp: is_lub_def is_ub_def ball_simps below_up_def split: u.split)
lemma up_chain_lemma:
assumes Y: "chain Y"
obtains "∀i. Y i = Ibottom"
| A k where "∀i. Iup (A i) = Y (i + k)" and "chain A" and "range Y <<| Iup (⨆i. A i)"
proof (cases "∃k. Y k ≠ Ibottom")
case True
then obtain k where k: "Y k ≠ Ibottom" ..
define A where "A i = (THE a. Iup a = Y (i + k))" for i
have Iup_A: "∀i. Iup (A i) = Y (i + k)"
proof
fix i :: nat
from Y le_add2 have "Y k ⊑ Y (i + k)" by (rule chain_mono)
with k have "Y (i + k) ≠ Ibottom" by (cases "Y k") auto
then show "Iup (A i) = Y (i + k)"
by (cases "Y (i + k)", simp_all add: A_def)
qed
from Y have chain_A: "chain A"
by (simp add: chain_def Iup_below [symmetric] Iup_A)
then have "range A <<| (⨆i. A i)"
by (rule cpo_lubI)
then have "range (λi. Iup (A i)) <<| Iup (⨆i. A i)"
by (rule is_lub_Iup)
then have "range (λi. Y (i + k)) <<| Iup (⨆i. A i)"
by (simp only: Iup_A)
then have "range (λi. Y i) <<| Iup (⨆i. A i)"
by (simp only: is_lub_range_shift [OF Y])
with Iup_A chain_A show ?thesis ..
next
case False
then have "∀i. Y i = Ibottom" by simp
then show ?thesis ..
qed
instance u :: (cpo) cpo
proof
fix S :: "nat ⇒ 'a u"
assume S: "chain S"
then show "∃x. range (λi. S i) <<| x"
proof (rule up_chain_lemma)
assume "∀i. S i = Ibottom"
then have "range (λi. S i) <<| Ibottom"
by (simp add: is_lub_const)
then show ?thesis ..
next
fix A :: "nat ⇒ 'a"
assume "range S <<| Iup (⨆i. A i)"
then show ?thesis ..
qed
qed
subsection ‹Lifted cpo is pointed›
instance u :: (cpo) pcpo
by intro_classes fast
text ‹for compatibility with old HOLCF-Version›
lemma inst_up_pcpo: "⊥ = Ibottom"
by (rule minimal_up [THEN bottomI, symmetric])
subsection ‹Continuity of \emph{Iup} and \emph{Ifup}›
text ‹continuity for \<^term>‹Iup››
lemma cont_Iup: "cont Iup"
apply (rule contI)
apply (rule is_lub_Iup)
apply (erule cpo_lubI)
done
text ‹continuity for \<^term>‹Ifup››
lemma cont_Ifup1: "cont (λf. Ifup f x)"
by (induct x) simp_all
lemma monofun_Ifup2: "monofun (λx. Ifup f x)"
apply (rule monofunI)
apply (case_tac x, simp)
apply (case_tac y, simp)
apply (simp add: monofun_cfun_arg)
done
lemma cont_Ifup2: "cont (λx. Ifup f x)"
proof (rule contI2)
fix Y
assume Y: "chain Y" and Y': "chain (λi. Ifup f (Y i))"
from Y show "Ifup f (⨆i. Y i) ⊑ (⨆i. Ifup f (Y i))"
proof (rule up_chain_lemma)
fix A and k
assume A: "∀i. Iup (A i) = Y (i + k)"
assume "chain A" and "range Y <<| Iup (⨆i. A i)"
then have "Ifup f (⨆i. Y i) = (⨆i. Ifup f (Iup (A i)))"
by (simp add: lub_eqI contlub_cfun_arg)
also have "… = (⨆i. Ifup f (Y (i + k)))"
by (simp add: A)
also have "… = (⨆i. Ifup f (Y i))"
using Y' by (rule lub_range_shift)
finally show ?thesis by simp
qed simp
qed (rule monofun_Ifup2)
subsection ‹Continuous versions of constants›
definition up :: "'a → 'a u"
where "up = (Λ x. Iup x)"
definition fup :: "('a → 'b::pcpo) → 'a u → 'b"
where "fup = (Λ f p. Ifup f p)"
translations
"case l of XCONST up⋅x ⇒ t" ⇌ "CONST fup⋅(Λ x. t)⋅l"
"case l of (XCONST up :: 'a)⋅x ⇒ t" ⇀ "CONST fup⋅(Λ x. t)⋅l"
"Λ(XCONST up⋅x). t" ⇌ "CONST fup⋅(Λ x. t)"
text ‹continuous versions of lemmas for \<^typ>‹('a)u››
lemma Exh_Up: "z = ⊥ ∨ (∃x. z = up⋅x)"
by (induct z) (simp add: inst_up_pcpo, simp add: up_def cont_Iup)
lemma up_eq [simp]: "(up⋅x = up⋅y) = (x = y)"
by (simp add: up_def cont_Iup)
lemma up_inject: "up⋅x = up⋅y ⟹ x = y"
by simp
lemma up_defined [simp]: "up⋅x ≠ ⊥"
by (simp add: up_def cont_Iup inst_up_pcpo)
lemma not_up_less_UU: "up⋅x \<notsqsubseteq> ⊥"
by simp
lemma up_below [simp]: "up⋅x ⊑ up⋅y ⟷ x ⊑ y"
by (simp add: up_def cont_Iup)
lemma upE [case_names bottom up, cases type: u]: "⟦p = ⊥ ⟹ Q; ⋀x. p = up⋅x ⟹ Q⟧ ⟹ Q"
by (cases p) (simp add: inst_up_pcpo, simp add: up_def cont_Iup)
lemma up_induct [case_names bottom up, induct type: u]: "P ⊥ ⟹ (⋀x. P (up⋅x)) ⟹ P x"
by (cases x) simp_all
text ‹lifting preserves chain-finiteness›
lemma up_chain_cases:
assumes Y: "chain Y"
obtains "∀i. Y i = ⊥"
| A k where "∀i. up⋅(A i) = Y (i + k)" and "chain A" and "(⨆i. Y i) = up⋅(⨆i. A i)"
by (rule up_chain_lemma [OF Y]) (simp_all add: inst_up_pcpo up_def cont_Iup lub_eqI)
lemma compact_up: "compact x ⟹ compact (up⋅x)"
apply (rule compactI2)
apply (erule up_chain_cases)
apply simp
apply (drule (1) compactD2, simp)
apply (erule exE)
apply (drule_tac f="up" and x="x" in monofun_cfun_arg)
apply (simp, erule exI)
done
lemma compact_upD: "compact (up⋅x) ⟹ compact x"
unfolding compact_def
by (drule adm_subst [OF cont_Rep_cfun2 [where f=up]], simp)
lemma compact_up_iff [simp]: "compact (up⋅x) = compact x"
by (safe elim!: compact_up compact_upD)
instance u :: (chfin) chfin
apply intro_classes
apply (erule compact_imp_max_in_chain)
apply (rule_tac p="⨆i. Y i" in upE, simp_all)
done
text ‹properties of fup›
lemma fup1 [simp]: "fup⋅f⋅⊥ = ⊥"
by (simp add: fup_def cont_Ifup1 cont_Ifup2 inst_up_pcpo cont2cont_LAM)
lemma fup2 [simp]: "fup⋅f⋅(up⋅x) = f⋅x"
by (simp add: up_def fup_def cont_Iup cont_Ifup1 cont_Ifup2 cont2cont_LAM)
lemma fup3 [simp]: "fup⋅up⋅x = x"
by (cases x) simp_all
end